Введение         Что это такое?    Вокруг черной дыры    Энергия из гравитационной бездны         Поиски черных дыр        Литература

Вокруг черной дыры

Дыра во времени
Объект Cygnus XR-1

Теория тяготения предсказывает, что время течет тем медленней, чем ближе часы находятся к гравитационному радиусу. Это означает, что, какие бы процессы ни протекали в сильном поле тяготения, далекий от черной дыры наблюдатель увидит их в замедленном темпе.

К факту покраснения света из-за замедления времени, обусловленного сильным полем тяготения, прибавляется еще покраснение света из-за Доплер-эффекта. Действительно, ведь поверхность сжимающейся звезды неуклонно удаляется от наблюдателя. А известно, что свет от удаляющегося источника воспринимается также покрасневшим.

По часам, расположенным на сжимающейся звезде, она за конечное время сжимается до размеров гравитационного радиуса и будет продолжать сжиматься дальше, к еще меньшим размерам. Но далекий внешний наблюдатель этих последних этапов эволюции никогда не увидит.
Небесная механика черных дыр

По теории Ньютона, если скорость тела меньше второй космической скорости, то оно движется по эллипсу около центрального тела – тяготеющего центра (ТЦ). У эллипса есть ближайшая к ТЦ точка (периастр) и наиболее удаленная (апоастр). По теории Эйнштейна, в случае движения тела со скоростью, меньшей второй космической, траектория его также имеет периастр и апоастр, но она уже не эллипс; оно движется по незамкнутой орбите, то приближаясь к черной дыре, то снова удаляясь от нее.

Будущие космические эксперименты и перспективы развития звездной астрономии

По теории Ньютона, движение по кругу возможно на любом расстоянии от ТЦ. Из теории Эйнштейна следует, что это не так. Чем ближе к ТЦ, тем больше скорость движущегося по окружности тела.

Для второй космической скорости справедлива формула теории Ньютона и тело, обладающее такой и большей скоростью, навсегда улетает от черной дыры в космос.

Гравитационные волны подобны электромагнитным, которые являются быстро меняющимся электромагнитным полем, «оторвавшимся» от своего источника и распространяющимся в пространстве с предельно большой скоростью – скоростью света. Точно также гравитационные волны являются изменяющимся гравитационным полем, «оторвавшимся» от своего источника и летящим в пространстве со скоростью света.

Чтобы обнаружить электромагнитную волну, достаточно в принципе взять электрически заряженный шарик и наблюдать за ним; когда на него станет падать электромагнитная волна, шарик придет в колебательное движение. Но чтобы обнаружить гравитационную волну, одним шариком не обойтись. Потребуется минимум два, помещенных на некотором расстоянии друг от друга. При падении на них гравитационной волны шарики будут то несколько сближаться, то удаляться. Измеряя изменение расстояния между ними, можно обнаружить волны тяготения. Возникающие гравитационные волны крайне слабы: они должны излучаться при ускоренных движениях массивных тел.

Черные дыры и свет

Поле тяготения влияет на свет. Оно заставляет фотоны менять свою частоту и искривляет траекторию лучей. Чем ближе к черной дыре, тем сильнее искривление траектории.

Наличие критической окружности для фотонов ведет к тому, что свет, проходящий достаточно близко к черной дыре, будет ею гравитационно захвачен.

Луч, проходящий вплотную к окружности размером в полтора гравитационных радиуса, неограниченно навивается на нее, а подходящий еще ближе упирается в черную дыру.При движении около черной дыры меняется и частота колебаний световых волн. Чем ближе фотоны к черной дыре, тем сильнее возрастает частота колебаний. При удалении от черной дыры частота колебаний световых волн уменьшается.
Гравитационный вихрь вокруг черной дыры

По теории Ньютона, гравитационное поле никак не зависит от движения вещества. Так, поля тяготения неподвижного шара и вращающегося совершенно одинаковы, если только одинаковы их массы. По теории Эйнштейна, это не так: поля тяготения рассматриваемых шаров будут несколько отличаться.

При коллапсе вращающегося тела возникает вращающаяся черная дыра.

Объект GRS1915+105, гигантская звезда и черная дыра, вращающиеся друг относительно друга

Вращение черной дыры не может быть не может быть сколь угодно большим. Дело в том, что она не сможет возникнуть, если тело вращалось слишком быстро.

У вращающейся черной дыры меняются и законы небесной механики.

Если дыра вращается, то легче всего ею будут захватываться частицы, которые вблизи черной дыры летят в сторону, противоположную вращению, и с гораздо большим трудом – частицы, летящие мимо черной дыры в сторону вращения.

НАВЕРХ