Чёрные дыры Вселенной

Главная

Галерея

КРАТКИЕ СВЕДЕНИЯ ОБ ОБЩЕЙ ТЕОРИИ ОТНОСИТЕЛЬНОСТИ ЭЙНШТЕЙНА

Принцип эквивалентности. Общая теория относительности, в окончательной форме сформулированная Эйнштейном в 1915 г., возникла в результате попытки построения релятивистского обобщения теории тяготения Ньютона, т. е. приведения теории Ньютона в соответствие с принципом конечности скорости распространения взаимодействия и с законами специальной теории относительности. Исходным пунктом для построения общей теории относительности явился принцип эквивалентности инертной и гравитационной масс. Согласно этому принципу отношение гравитационной массы mгр, определяющей силу F, действующую на тело в гравитационном поле напряженности T:F = mгрГ, к инертной массе тин, связывающей силу F и величину вызываемого ею ускорения a:F = mинa, не зависит от свойств и состава тела. Поэтому ускорение пробного тела в травирационном поле определяется только напряжённостью поля в точке, где тело находится. Иными словами в гравитационном поле зависимость от времени положения пробного точечного тела, его мировая линия, однозначно определяется начальным положением тела и его скоростью. Тем самым задача изучения движения частиц в гравитационном поле сводится к изучению геометрии мировых линий. В отсутствие поле тяготения мировые линии движения свободных частиц являются прямыми, т. е. кратчайшими, линиями между произвольной парой точек, лежащих на них. Оказывается, что при наличии гравитационного поля мировые линии пробных тел тоже можно считать “кратчайшими”.

Гравитация как геометрия. Геометрия искривлённого пространства определяется заданием расстояния между произвольной парой близких точек этого пространства. Тем самым определяется понятие длины любой кривой в таком пространстве. “Кратчайшие” кривые носят название геодезических. В заданных координатах квадрат расстояния ds2 между парой близких точек с координатами хm и х'+dxm в точке х определяется следующим образом: ds2 = gmn (х)dхmn, . Набор функций gmn , задающий в каждой координатной системе pdc-стояние между близкими точками, называется метрикой. В плоском пространстве-времени координаты можно выбрать так, что функции gmn постоянны во всем пространстве-времени и метрика имеет вид: ds2 = hmn dxmdx' @ C2dt2 + dx2 + dy2 + dz2. В общем случае это невозможно. Самое большее, чего удается достичь за счёт выбора координат, это добиться совпадения метрики gmn (х) В Окрестности ПРОИЗВОЛЬНОЙ ТОЧКИ x0 С этаmn  с точностью до величин второго порядка малости.

Предположим теперь, что в гравитационном поле свободно движется невращающееся пробное тело. Свяжем с ним систему отсчёта и, воспользовавшись принципом эквивалентности, постараемся описать в этой системе явления, происходящие в окрестности тела. Прежде всего заметим, что если мы ограничимся областью пространства-времени, размеры которой I много меньше характерной длины L, на которой гравитационное поле заметно изменяется, то ускорения всех тел в такой окрестности практически совпадают и относительно выбранной нами системы отсчета такие тела будут двигаться равномерно и прямолинейно. Иными словами, переходом к свободно падающей системе отсчёта можно локально исключить гравитационное поле. В такой системе отсчёта движение тел подчиняется законам специальной теории относительности, а отклонение от этих законов тем меньше, чем меньше величина отношения HL.

Приливные силы и кривизна пространства-времени. Если гравитационное поле неоднородно, то исключить его путём перехода к падающей системе отсчёта сразу во всём пространстве или в конечной, но не очень малой области не удаётся. Действительно, рассмотрим, например, относительное движение в гравитационном поле Земли двух частиц, расположенных на расстоянии l друг от друга и падающих по радиусу к её центру. При этом движении частицы 1 к 2 сближаются, ускорение их относительного сближения равно GMl/R3. Частицы 3 и 4 удаляются друг от друга с относительным ускорением 2GMl/R3. Это означает, что при движении протяжённого тела в неоднородном гравитационном поле в нём возникают так называемые приливные силы, стремящиеся его деформировать. Относительное приливное ускорение пары точек тела пропорционально расстоянию между этими точками и зависит от их взаимного расположения. Тензорный коэффициент пропорциональности характеризует степень неоднородности гравитационного поля и носит название тензора кривизны пространства-времени.

Поскольку гравитационное взаимодействие универсально к не существует “нейтральных” по отношению к нему тел, то оказывается невозможным в чисто гравитационных экспериментах измерить “напряженность” гравитационного поля. Подобные эксперименты позволяют определить только относительные ускорения, т. е. кривизну пространства-времени. Пространство-время является плоским, если его кривизна всюду обращается в ноль. В случае если кривизна не равна нулю, метрика не может быть плоской, однако в окрестности любой точки её можно привести к виду:

gmn (x)=hmn + (кривизна пространства-t)*(х-x0)2 +(поправки порядка (х—х0)3 )

Уравнения Эйнштейна. Согласно Эйнштейну, кривизна пространства-времени пропорциональна плотности энергии-импульса вещества, порождающего гравитационное поле. Соответствующие уравнения, позволяющие определить метрику по заданному распределению вещества и тем самым восстановить геометрию пространства-времени, носят название уравнений Эйнштейна. В пределе, когда гравитационное поле слабое, т. е. гравитационный потенциал phi (ф) много меньше с2 и движение источника нерелятивистское, уравнения Эйнштейна сводятся к обычному уравнению для гравитационного потенциала в теории Ньютона. Тем самым предсказания теории Эйнштейна для слабых гравитационных полей носят характер малых поправок ~ф/с2 к известным результатам теории Ньютона. Именно эти поправки подвергаются экспериментальной проверке. Результаты всех наблюдений и экспериментов по проверке общей теории относительности, включая такие, как измерение красного смещения и запаздывания световых сигналов в гравитационном поле, измерение сдвига перигелия Меркурия и отклонение лучей света Солнцем, подтверждают эту теорию в области слабого поля, допуская отклонение от нее не более нескольких процентов.

Наиболее радикально отличаются предсказания теории Эйнштейна от ньютоновской теории гравитации в случае, когда гравитационное поле нельзя считать слабым. Качественно новым в этом случае является предсказание теорией Эйнштейна возможности нетривиальных глобальных свойств пространства-времени. Это касается прежде всего космологии, когда рассматриваются, области пространства и интервалы времени порядка-радиуса кривизны пространства-времени. В частности наше пространство может обладать нетривиальной топологией и походить не на плоскость, а на расширяющуюся сферу, являясь замкнутым, имея конечный объем, но не обладая никакими границами.

Возможность существования чёрных дыр — другое предсказание теории Эйнштейна — связана с появлением нетривиальной причинной структурой, которая проявляется в наличии в пространстве-времени областей, откуда невозможно получение никакой информации наблюдателями, расположенными вне этой области.

Отсутствие экспериментальной проверки теории Эйнштейна в области сильного поля, именно там, где предсказания этой теории носят весьма специальный характер, оставляет в принципе открытой возможность для развития других, отличных от теории Эйнштейна теорий гравитации. За время, прошедшее с момента создания общей теории относительности, такие попытки предпринимались неоднократно. Практически все рассматриваемые в настоящее время модификации теории гравитации принимают принцип эквивалентности и являются метрическими, т. е. описывают действие гравитационного поля на вещество в терминах искривленного пространства-времени. Основные расхождения касаются формы уравнений самого гравитационного поля:

Новая теория гравитации получает право на жизнь лишь после того, как подтверждается ее пригодность для описания результатов экспериментов в слабом гравитационном поле. Общим для большинства из развитых вариантов оказалось предсказание возможности су* шествования отрицательных энергий, так что при гравитационном излучении в двойной системе в таких теориях предсказывается увеличение (а не уменьшение!) расстояния между телами. Такие варианты, на наш взгляд, не следует считать разумными. И хотя до сих пор теория Эйнштейна является непревзойденной по красоте, строгости и экономности предпосылок, лежащих в (fee основании, и большинство физиков считают ее справедливой, в роли окончательного судьи в этом вопросе должен выступить опыт. Именно поэтому обсуждение свойств черных дыр и возможности наблюдения их с целью проверки предсказаний теории Эйнштейна в сильных гравитационных полях приобретают такое важное значение. Ниже, рассказывая о черных дырах, мы опираемся на результаты, полученные в рамках общей теории относительности.

Диаграмма пространства-времениДиаграммы пространства-времени. Исследование свойств гравитационного поля естественным образом разбивается на несколько этапов. Во-первых, необходимо найти решение уравнений Эйнштейна для интересующего нас случая. Не последнюю роль при этом играет удобный выбор координатной системы. При попытке наглядного изображения свойств решения уравнения Эйнштейна возникает проблема, как отразить свойства четырехмерного пространства-времени, да к тому же еще искривленного, на плоском рисунке. К счастью, многие из интересных решений обладают симметрией, т. е. метрика не зависит существенным образом от одной или нескольких переменных, и не теряя общности, можно изобразить на рисунке трехмерное или даже двух мерное сечение такого пространства. Для того чтобы на подобной диаграмме пространства-времени отразить существенные свойства метрики, удобно показать расположение локальных световых конусов, соответствующих данной метрике. Такой локальный световой конус с вершиной в точке хm является геометрическим местом точек m + dxm близких к хm и удовлетворяющих условию gmn (x)dxm- dxn = 0. Образующие локального светового конуса изображают движение световых лучей. Пробным массивным частицам соответствуют линии, проходящие через вершину внутрь светового конуса. Картина рас положения локальных световых конусов позволяет не только ответить на многие вопросы, связанные с особенностями движения в найденном гравитационном поле; но и даёт ясное представление о причинной структуре пространства-времени.